Loading content...
Loading AI models database...
Google vs Meta open-weight models
At same parameter counts, Llama edges out. But Gemma 27B punches above its weight and fits in 16GB VRAM.
Choose Gemma 27B if you have 16-24GB VRAM and want quality exceeding Llama 8B.
Choose Llama if you need long context, or want to scale up to 70B/405B later.
Gemma 2 from Google offers competitive performance in smaller packages. Here's how it compares to Meta's Llama 3.
| Specification | Gemma 2 27B | Llama 3.1 8B |
|---|---|---|
| Developer | Meta | |
| Parameters | 27B | 8B |
| Context Length | 8K | 128K |
| VRAM (Minimum) | 16GB (Q4) | 8GB (Q4) |
| VRAM (Recommended) | 24GB | 12GB |
| Release Date | June 2024 | July 2024 |
| License | Gemma Terms of Use | Llama 3.1 Community License |
| Category | Gemma 2 27B | Llama 3.1 8B | Winner |
|---|---|---|---|
| MMLU (27B vs 8B) | 75.2% | 69.4% | Gemma 2 27B |
| Coding | 68.0% | 72.6% | Llama 3.1 8B |
| Context Length | 8K | 128K | Llama 3.1 8B |
| VRAM (Q4) | ~15GB | ~6GB | Llama 3.1 8B |
| Size/Quality Ratio | Excellent | Good | Gemma 2 27B |
Check our GPU buying guides to find the right hardware for running LLMs locally.