L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA RTX 6000 Ada run deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct?

Runs Q448GB VRAM availableRequires 4GB+

NVIDIA RTX 6000 Ada meets the minimum VRAM requirement for Q4 inference of deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA RTX 6000 Ada can run deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct with Q4 quantization. At approximately 175 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 44GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q44GB48GB175.33 tok/s✅ Fits comfortably
Q87GB48GB128.55 tok/s✅ Fits comfortably
FP1615GB48GB70.08 tok/s✅ Fits comfortably

Best current price

NVIDIA RTX 6000 Ada
$7,199.00 on Amazon
Check Price

Suitable alternatives

NVIDIA H200 SXM 141GB
141GB
702.13 tok/s
Price: —
AMD Instinct MI300X
192GB
693.59 tok/s
Price: —
AMD Instinct MI300X
192GB
583.05 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
520.27 tok/s
Price: —
NVIDIA H100 SXM5 80GB
80GB
504.08 tok/s
Price: —

More questions

NVIDIA RTX 6000 Ada specs & pricingFull guide for deepseek-ai/DeepSeek-Coder-V2-Lite-Instructdeepseek-ai/DeepSeek-Coder-V2-Lite-Instruct speed on NVIDIA RTX 6000 Adadeepseek-ai/DeepSeek-Coder-V2-Lite-Instruct Q4 requirements