L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA H100 SXM5 80GB run Qwen/Qwen3-30B-A3B-Instruct-2507-FP8?

Runs Q480GB VRAM availableRequires 15GB+

NVIDIA H100 SXM5 80GB meets the minimum VRAM requirement for Q4 inference of Qwen/Qwen3-30B-A3B-Instruct-2507-FP8. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA H100 SXM5 80GB can run Qwen/Qwen3-30B-A3B-Instruct-2507-FP8 with Q4 quantization. At approximately 267 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 65GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q415GB80GB267.05 tok/s✅ Fits comfortably
Q831GB80GB201.44 tok/s✅ Fits comfortably
FP1661GB80GB98.46 tok/s✅ Fits comfortably

Suitable alternatives

AMD Instinct MI300X
192GB
435.24 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
386.49 tok/s
Price: —
AMD Instinct MI300X
192GB
277.56 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
272.82 tok/s
Price: —
AMD Instinct MI250X
128GB
242.72 tok/s
Price: —

More questions

NVIDIA H100 SXM5 80GB specs & pricingFull guide for Qwen/Qwen3-30B-A3B-Instruct-2507-FP8Qwen/Qwen3-30B-A3B-Instruct-2507-FP8 speed on NVIDIA H100 SXM5 80GBQwen/Qwen3-30B-A3B-Instruct-2507-FP8 Q4 requirements