L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA H100 SXM5 80GB run google/gemma-3-270m-it?

Runs Q480GB VRAM availableRequires 4GB+

NVIDIA H100 SXM5 80GB meets the minimum VRAM requirement for Q4 inference of google/gemma-3-270m-it. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA H100 SXM5 80GB can run google/gemma-3-270m-it with Q4 quantization. At approximately 505 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 76GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q44GB80GB504.61 tok/s✅ Fits comfortably
Q87GB80GB354.08 tok/s✅ Fits comfortably
FP1615GB80GB185.78 tok/s✅ Fits comfortably

Suitable alternatives

AMD Instinct MI300X
192GB
775.50 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
722.59 tok/s
Price: —
AMD Instinct MI250X
128GB
524.18 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
519.50 tok/s
Price: —
AMD Instinct MI300X
192GB
499.05 tok/s
Price: —

More questions

NVIDIA H100 SXM5 80GB specs & pricingFull guide for google/gemma-3-270m-itgoogle/gemma-3-270m-it speed on NVIDIA H100 SXM5 80GBgoogle/gemma-3-270m-it Q4 requirements