L
localai.computer
ModelsGPUsSystemsAI SetupsBuildsOpenClawMethodology

Resources

  • Methodology
  • Submit Benchmark
  • About

Browse

  • AI Models
  • GPUs
  • PC Builds

Guides

  • OpenClaw Guide
  • How-To Guides

Legal

  • Privacy
  • Terms
  • Contact

© 2025 localai.computer. Hardware recommendations for running AI models locally.

ℹ️We earn from qualifying purchases through affiliate links at no extra cost to you. This supports our free content and research.

Can NVIDIA H100 PCIe 80GB run meta-llama/Llama-3.1-8B?

Runs Q480GB VRAM availableRequires 4GB+

NVIDIA H100 PCIe 80GB meets the minimum VRAM requirement for Q4 inference of meta-llama/Llama-3.1-8B. Review the quantization breakdown below to see how higher precision settings impact VRAM and throughput.

What this means for you

NVIDIA H100 PCIe 80GB can run meta-llama/Llama-3.1-8B with Q4 quantization. At approximately 337 tokens/second, you can expect Excellent speed - conversational response times under 1 second.

You have 76GB headroom, which is sufficient for system overhead and smooth operation.

Quantization breakdown

QuantizationVRAM neededVRAM availableEstimated speedVerdict
Q44GB80GB337.28 tok/s✅ Fits comfortably
Q89GB80GB204.13 tok/s✅ Fits comfortably
FP1617GB80GB120.01 tok/s✅ Fits comfortably

Suitable alternatives

AMD Instinct MI300X
192GB
810.24 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
666.36 tok/s
Price: —
AMD Instinct MI300X
192GB
550.08 tok/s
Price: —
AMD Instinct MI250X
128GB
524.41 tok/s
Price: —
NVIDIA H200 SXM 141GB
141GB
505.82 tok/s
Price: —

More questions

NVIDIA H100 PCIe 80GB specs & pricingFull guide for meta-llama/Llama-3.1-8Bmeta-llama/Llama-3.1-8B speed on NVIDIA H100 PCIe 80GBmeta-llama/Llama-3.1-8B Q4 requirements